【考纲内容】
【复习提示】
本章主要介绍计算机网络体系结构的基本概念,读者可以在理解的基础上适当地记忆。重点掌握网络的分层结构(包括 5 层和 7 层结构),尤其是 ISO/OSI 参考模型各层的功能及相关协议、接口和服务等概念。掌握有关网络的各种性能指标,特别是时延、带宽、速率和吞吐量等的计算。
一般认为,计算机网络是一个将分散的、具有独立功能的计算机系统,通过通信设备与线路连接起来,由功能完善的软件实现资源共享和信息传递的系统。简而言之,计算机网络就是一些互连的、自治的计算机系统的集合。
在计算机网络发展的不同阶段,人们对计算机网络给出了不同的定义,这些定义反映了当时网络技术发展的水平。这些定义可分为以下三类。
这种观点认为,只要是能实现远程信息处理的系统或能进一步达到资源共享的系统,都是计算机网络。广义的观点定义了一个计算机通信网络,它在物理结构上具有计算机网络的雏形,但资源共享能力弱,是计算机网络发展的低级阶段。
这种观点认为,计算机网络是“以能够相互共享资源的方式互连起来的自治计算机系统的集合”。该定义包含三层含义:
该定义符合目前计算机网络的基本特征。
这种观点认为,存在一个能为用户自动管理资源的网络操作系统,它能够调用用户所需要的资源,而整个网络就像一个大的计算机系统一样对用户是透明的。用户使用网络就像使用一台单一的超级计算机,无须了解网络的存在、资源的位置信息。用户透明性观点的定义描述了一个分布式系统,它是网络未来发展追求的目标。
省流:
从不同的角度,可以将计算机网络的组成分为如下几类。
从组成部分上看,一个完整的计算机网络主要由硬件、软件、协议三大部分组成,缺一不可。
从工作方式上看,计算机网络(这里主要指 Internet,即因特网)可分为边缘部分和核心部分。
从功能组成上看,计算机网络由通信子网和资源子网组成。
计算机网络的功能很多,现今的很多应用都与网络有关。主要有以下五大功能。
除以上几大主要功能外,计算机网络还可以实现电子化办公与服务、远程教育、娱乐等功能,满足了社会的需求,方便了人们学习、工作和生活,具有巨大的经济效益
注意:若中央处理器之间的距离非常近(如仅1m的数量级或甚至更小),则一般称为多处理器系统,而不称为计算机网络。
是否采用分组存储转发与路由选择机制是点对点式网络与广播式网络的重要区别,广域网基本都属于点对点网络。
网络拓扑结构是指由网中结点(路由器、主机等)与通信线路(网线)之间的几何关系(如总线形、环形)表示的网络结构,主要指通信子网的拓扑结构。
按网络的拓扑结构,主要分为总线形、星形、环形和网状网络等,如图1.2所示。星形、总线形和环形网络多用于局域网,网状网络多用于广域网。
以上 4 种基本的网络拓扑结构可以互连为更复杂的网络。
交换技术是指各台主机之间、各通信设备之间或主机与通信设备之间为交换信息所采用的数据格式和交换装置的方式。按交换技术可将网络分为如下几种。
电路交换网络。在源节点和目的节点之间建立一条专用的通路用于传送数据,包括建立连接、传输数据和断开连接三个阶段。最典型的电路交换网是传统电话网络。 该类网络的主要特点是整个报文的比特流连续地从源点直达终点,好像是在一条管道中传送。优点是数据直接传送、时延小。缺点是线路利用率低、不能充分利用线路容量、不便于进行差错控制。
报文交换网络。用户数据加上源地址、目的地址、校验码等辅助信息,然后封装成报文。整个报文传送到相邻结点,全部存储后,再转发给下一个结点,重复这一过程直到到达目的结点。每个报文可以单独选择到达目的结点的路径。 报文交换网络也称存储-转发网络,主要特点是整个报文先传送到相邻结点,全部存储后查找转发表,转发到下一个结点。 优点:
缺点:
分组交换网络,也称包交换网络。其原理是,将数据分成较短的固定长度的数据块,在每个数据块中加上目的地址、源地址等辅助信息组成分组(包),以存储-转发方式传输。其主要特点是单个分组(它只是整个报文的一部分)传送到相邻结点,存储后查找转发表;转发到下一个结点。除具备报文交换网络的优点外,分组交换网络还具有自身的优点:
现在的主流网络基本上都可视为分组交换网络
传输介质可分为有线和无线两大类,因此网络可以分为有线网络和无线网络。有线网络又分为双绞线网络、同轴电缆网络等。无线网络又可分为蓝牙、微波、无线电等类型。
计算机网络的标准化对计算机网络的发展和推广起到了极为重要的作用。
因特网的所有标准都以 RFC(Request For Comments)的形式在因特网上发布,但并非每个RFC都是因特网标准,RFC要上升为因特网的正式标准需经过以下4个阶段。
此外,还有试验的 RFC 和提供信息的 RFC。各种 RFC 之间的关系如图 1.3 所示。
在国际上,负责制定、实施相关网络标准的标准化组织众多,主要有如下几个:
性能指标从不同方面度量计算机网络的性能。常用的性能指标如下。
带宽(Bandwidth)本来表示通信线路允许通过的信号频带范围,单位是赫兹(Hz)。而在计算机网络中,带宽表示网络的通信线路所能传送数据的能力,是数字信道所能传送的“最高数据传输速率”的同义语,单位是比特/秒(b/s)。
时延(Delay)。指数据(一个报文或分组)从网络(或链路)的一端传送到另一端所需要的总时间,它由4部分构成:发送时延、传播时延、处理时延和排队时延。
发送时延。结点将分组的所有比特推向(传输)链路所需的时间,即从发送分组的第一个比特算起,到该分组的最后一个比特发送完毕所需的时间,因此也称传输时延。计算公式为
传播时延。电磁波在信道中传播一定的距离需要花费的时间,即一个比特从链路的一端传播到另一端所需的时间。计算公式为
处理时延。数据在交换结点为存储转发而进行的一些必要的处理所花费的时间。例如,分析分组的首部、从分组中提取数据部分、进行差错检验或查找适当的路由等。
排队时延。分组在进入路由器后要先在输入队列中排队等待处理。路由器确定转发端口后,还要在输出队列中排队等待转发,这就产生了排队时延。
因此,数据在网络中经历的总时延就是以上 4 部分时延之和:
注意:做题时,排队时延和处理时延一般可忽略不计(除非题目另有说明)。另外,对于高速链路,提高的仅是数据发送速率而非比特在链路上的传播速率。提高数据的发送速率只是为了减少数据的发送时延。
时延带宽积。指发送端发送的第一个比特即将到达终点时,发送端已经发出了多少个比特,因此又称以比特为单位的链路长度,即
如图 1.4 所示,考虑一个代表链路的圆柱形管道,其长度表示链路的传播时延,横截面积表示链路带宽,则时延带宽积表示该管道可以容纳的比特数量。
往返时延(Round-Trip Time,RTT)。指从发送端发出一个短分组,到发送端收到来自接收端的确认(接收端收到数据后立即发送确认),总共经历的时延。在互联网中,往返时延还包括各中间结点的处理时延、排队时延及转发数据时的发送时延。
吞吐量(Throughput)。指单位时间内通过某个网络(或信道、接口)的数据量。吞吐量受网络带宽或网络额定速率的限制。
速率(Speed)。网络中的速率是指连接到计算机网络上的主机在数字信道上传送数据的速率,也称数据传输速率、数据率或比特率,单位为b/s(比特/秒)(或bit/s,有时也写为bps)。数据率较高时,可用 kb/s(k=103)、Mb/s(M=106)或Gb/s(G=109)表示。在计算机网络中,通常把最高数据传输速率称为带宽。
信道利用率。指出某一信道有百分之多少的时间是有数据通过的,即
两个系统中实体间的通信是一个很复杂的过程,为了降低协议设计和调试过程的复杂性,也为了便于对网络进行研究、实现和维护,促进标准化工作,通常对计算机网络的体系结构以分层的方式进行建模。
我们把计算机网络的各层及其协议的集合称为网络的体系结构(Architecture)。换言之,计算机网络的体系结构就是这个计算机网络及其所应完成的功能的精确定义,它是计算机网络中的层次、各层的协议及层间接口的集合。需要强调的是,这些功能究竟是用何种硬件或软件完成的,则是一个遵循这种体系结构的实现(Implementation)问题。体系结构是抽象的,而实现是具体的,是真正在运行的计算机硬件和软件。
计算机网络的体系结构通常都具有可分层的特性,它将复杂的大系统分成若干较容易实现的层次。分层的基本原则如下:
由于分层后各层之间相对独立,灵活性好,因而分层的体系结构易于更新(替换单个模块),易于调试,易于交流,易于抽象,易于标准化。但层次越多,有些功能在不同层中难免重复出现,产生额外的开销,导致整体运行效率越低。层次越少,就会使每层的协议太复杂。因此,在分层时应考虑层次的清晰程度与运行效率间的折中、层次数量的折中。
依据一定的规则,将分层后的网络从低层到高层依次称为第1层、第2层……第n层,通常还为每层取一个特定的名称,如第1层的名称为物理层。
在计算机网络的分层结构中,第 n 层中的活动元素通常称为第 n 层实体。具体来说,实体指任何可发送或接收信息的硬件或软件进程,通常是一个特定的软件模块。不同机器上的同一层称为对等层,同一层的实体称为对等实体。第 n 层实体实现的服务为第 n+1 层所利用。在这种情况下,第 n 层称为服务提供者,第 n+1 层则服务于用户。
每一层还有自己传送的数据单位,其名称、大小、含义也各有不同。
在计算机网络体系结构的各个层次中,每个报文都分为两部分:一个是数据部分,即 SDU;二是控制信息部分,即 PCI,它们共同组成 PDU。
在各层间传输数据时,把从第 n+1 层收到的 PDU 作为第 n 层的 SDU,加上第 n 层的 PCI,就变成了第.n 层的 PDU,交给第 n-1 层后作为 SDU 发送,接收方接收时做相反的处理,因此可知三者的关系为 n-SDU + n-PCI = n-PDU = (n-1)-SDU,其变换过程如图 1.5 所示。
具体地,层次结构的含义包含以下几方面:
协议,就是规则的集合。在网络中要做到有条不紊地交换数据,就必须遵循一些事先约定好的规则。这些规则明确规定了所交换的数据的格式及有关的同步问题。这些为进行网络中的数据交换而建立的规则、标准或约定称为网络协议(Network Protocol),它是控制两个(或多个)对等实体进行通信的规则的集合,是水平的。不对等实体之间是没有协议的,比如用 TCP/IP 协议栈通信的两个结点,结点 A 的传输层和结点 B 的传输层之间存在协议,但结点 A 的传输层和结点 B 的网络层之间不存在协议。网络协议也简称为协议。
协议由语法、语义和同步三部分组成。语法规定了传输数据的格式;语义规定了所要完成的功能,即需要发出何种控制信息、完成何种动作及做出何种应答:同步规定了执行各种操作的条件、时序关系等,即事件实现顾序的详细说明。一个完整的协议通常应具有线路管理(建立、释放连接)、差错控制、数据转换等功能。
接口是同一结点内相邻两层间交换信息的连接点,是一个系统内部的规定。每层只能为紧邻的层次之间定义接口,不能跨层定义接口。在典型的接口上,同一结点相邻两层的实体通过服务访问点(Service Access Point,SAP)进行交互。服务是通过 SAP 提供给上层使用的,第 n 层的 SAP 就是第 n+1 层可以访问第 n 层服务的地方。每个 SAP 都有一个能够标识它的地址。SAP 是一个抽象的概念,它实际上是一个逻辑接口(类似于邮政信箱),但和通常所说的两个设备之间的硬件接口是很不一样的。
服务是指下层为紧邻的上层提供的功能调用,它是垂直的。对等实体在协议的控制下,使得本层能为上一层提供服务,但要实现本层协议还需要使用下一层所提供的服务。
上层使用下层所提供的服务时必须与下层交换一些命令,这些命令在 OSI 参考模型中称为服务原语。OSI 参考模型将原语划分为4类:
这 4 类原语用于不同的功能,如建立连接、传输数据和断开连接等。有应答服务包括全部 4 类原语,而无应答服务则只有请求和指示两类原语。
4 类原语的关系如图 1.6 所示。
一定要注意,协议和服务在概念上是不一样的。首先,只有本层协议的实现才能保证向上一层提供服务。本层的服务用户只能看见服务而无法看见下面的协议,即下面的协议对上层的服务用户是透明的。其次,协议是“水平的”,即协议是控制对等实体之间通信的规则。但服务是“垂直的”,即服务是由下层通过层间接口向上层提供的。另外,并非在一层内完成的全部功能都称为服务,只有那些能够被高一层实体“看得见”的功能才称为服务。
协议、接口、服务三者之间的关系如图 1.7 所示。
计算机网络提供的服务可按以下三种方式分类。
在面向连接服务中,通信前双方必须先建立连接,分配相应的资源(如缓冲区),以保证通信能正常进行,传输结束后释放连接和所占用的资源。因此这种服务可以分为连接建立、数据传输和连接释放三个阶段。例如TCP就是一种面向连接服务的协议。
在无连接服务中,通信前双方不需要先建立连接,需要发送数据时可直接发送,把每个带有目的地址的包(报文分组)传送到线路上,由系统选定路线进行传输。这是一种不可靠的服务。这种服务常被描述为“尽最大努力交付”(Best-Effort-Delivery),它并不保证通信的可靠性。例如 IP、UDP 就是一种无连接服务的协议。
可靠服务是指网络具有纠错、检错、应答机制,能保证数据正确、可靠地传送到目的地。
不可靠服务是指网络只是尽量正确、可靠地传送,而不能保证数据正确、可靠地传送到目的地,是一种尽力而为的服务。
对于提供不可靠服务的网络,其网络的正确性、可靠性要由应用或用户来保障。例如,用户收到信息后要判断信息的正确性,如果不正确,那么用户要把出错信息报告给信息的发送者,以便发送者采取纠正措施。通过用户的这些措施,可以把不可靠的服务变成可靠的服务。
注意:在一层内完成的全部功能并非都称为服务,只有那些能够被高一层实体“看得见”的功能才能称为服务。
有应答服务是指接收方在收到数据后向发送方给出相应的应答,该应答由传输系统内部自动实现,而不由用户实现。所发送的应答既可以是肯定应答,也可以是否定应答,通常在接收到的数据有错误时发送否定应答。例如,文件传输服务就是一种有应答服务。
无应答服务是指接收方收到数据后不自动给出应答。若需要应答,则由高层实现。例如,对于 WWW 服务,客户端收到服务器发送的页面文件后不给出应答。
国际标准化组织(ISO)提出的网络体系结构模型,称为开放系统互连参考模型(OSI/RM),通常简称为 OSI 参考模型。OSI 参考模型有 7 层,自下而上依次为物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。低三层统称为通信子网,它是为了联网而附加的通信设备,完成数据的传输功能;高三层统称为资源子网,它相当于计算机系统,完成数据的处理等功能。传输层承上启下。OSI 参考模型的层次结构如图 1.8 所示。
下面详述OSI参考模型各层的功能。
物理层的传输单位是比特,功能是在物理媒体上为数据端设备透明地传输原始比特流。
物理层主要定义数据终端设备(DTE)和数据通信设备(DCE)的物理与逻辑连接方法,所以物理层协议也称物理层接口标准。由于在通信技术的早期阶段;通信规则称为规程(Procedure),因此物理层协议也称物理层规程。
物理层接口标准很多,如 EIA-232C、EIA/TIA RS-449、CCITT 的 X.21等。在计算机网络的复习过程中,不要忽略对各层传输协议的记忆,到了后期,读者对数据链路层、网络层、传输层和应用层的协议会比较熟悉,但往往容易忽视物理层的协议。
图1.9表示的是两个通信结点及它们间的一段通信链路,物理层主要研究以下内容:
注意,传输信息所利用的一些物理媒体,如双绞线、光缆、无线信道等,并不在物理层协议之内而在物理层协议下面。因此,有人把物理媒体当作第0层。
数据链路层的传输单位是帧,任务是将网络层传来的IP 数据报组装成帧。数据链路层的功能可以概括为成帧、差错控制、流量控制和传输管理等。
由于外界噪声的干扰,原始的物理连接在传输比特流时可能发生错误。如图 1.9 所示,左边结点想向右边结点传输数字 0,于是发出了信号 A;但传输过程中受到干扰,信号 A 变成了信号 B,而信号 B 又刚好代表 1,右边结点接收到信号 B 时,就会误以为左边结点传送了数字 1,从而发生差错。两个结点之间如果规定了数据链路层协议,那么可以检测出这些差错,然后把收到的错误信息丢弃,这就是差错控制功能。
如图 1.9 所示,在两个相邻结点之间传送数据时,由于两个结点性能的不同,可能结点 A 发数据的速率会比结点 B 接收数据的速率快,如果不加控制,那么结点 B 就会丢弃很多来不及接收的正确数据,造成传输线路效率的下降。流量控制可以协调两个结点的速率,使结点 A 发送数据的速率刚好是结点 B 可以接收的速率。
广播式网络在数据链路层还要处理新的问题,即如何控制对共享信道的访问。数据链路层的一个特殊的子层一一介质访问子层,就是专门处理这个问题的。
典型的数据链路层协议有 SDLC、HDLC、PPP、STP 和帧中继等。
网络层的传输单位是数据报,它关心的是通信子网的运行控制,主要任务是把网络层的协议数据单元(分组)从源端传到目的端,为分组交换网上的不同主机提供通信服务。关键问题是对分组进行路由选择,并实现流量控制、拥塞控制、差错控制和网际互连等功能。
如图 1.10 所示,结点A向结点B 传输一个分组时,一既可经过边 a、c、g,也可经过边 b、h,有很多条可以选择的路由,而网络层的作用就是根据网络的情况,利用相应的路由算法计算出一条合适的路径,使这个分组可以顺利到达结点 B。
流量控制与数据链路层的流量控制含义一样,都是协调 A 的发送速率和 B 的接收速率。
差错控制是通信两结点之间约定的特定检错规则,如奇偶校验码,接收方根据这个规则检查接收到的分组是否出现差错,如果出现了差错,那么能纠错就纠错,不能纠错就丢弃,确保向上层提交的数据都是无误的。
如果图 1.10 中的结点都处于来不及接受分组而要丢弃大量分组的情况,那么网络就处于拥塞状态,拥塞状态使得网络中的两个结点无法正常通信、网络层要采取一定的措施来缓解这种拥塞,这就是拥塞控制。
因特网是一个很大的互联网,它由大量异构网络通过路由器(Router)相互连接起来。因特网的主要网络层协议是无连接的网际协议(Internet Protocol,IP)和许多路由选择协议,因此因特网的网络层也称网际层或 IP 层。
主义,网络层中的“网络”一词并不是我们通常谈及的具体网络,而是在计算机网络体系结构中使用的专有名词。
网络层的协议有 IP、IPX、ICMP、IGMP、ARP、RARP 和 OSPF 等。
传输层也称运输层,传输单位是报文段(TCP)或用户数据报(UDP),传输层负责主机中两个进程之间的通信,功能是为端到端连接提供可靠的传输服务,为端到端连接提供流量控制、差错控制、服务质量、数据传输管理等服务。
数据链路层提供的是点到点的通信,传输层提供的是端到端的通信,两者不同。通俗地说,点到点可以理解为主机到主机之间的通信,一个点是指一个硬件地址或IP地址,网络中参与通信的主机是通过硬件地址或 IP 地址标识的;端到端的通信是指运行在不同主机内的两个进程之间的通信,一个进程由一个端口来标识,所以称为端到端通信。
使用传输层的服务,高层用户可以直接进行端到端的数据传输,从而忽略通信子网的存在。通过传输层的屏蔽,高层用户看不到子网的交替和变化。由于一台主机可同时运行多个进程,因此传输层具有复用和分用的功能。复用是指多个应用层进程可同时使用下面传输层的服务,分用是指传输层把收到的信息分别交付给上面应用层中相应的进程。
传输层的协议有TCP、UDP。
会话层允许不同主机上的各个进程之间进行会话。会话层利用传输层提供的端到端的服务,向表示层提供它的增值服务。这种服务主要为表示层实体或用户进程建立连接并在连接上有序地传输数据,这就是会话,也称建立同步(SYN)。
会话层负责管理主机间的会话进程,包括建立、管理及终止进程间的会话。会话层可以使用校验点使通信会话在通信失效时从校验点继续恢复通信,实现数据同步。
表示层主要处理在两个通信系统中交换信息的表示方式。不同机器采用的编码和表示方法不同,使用的数据结构也不同。为了使不同表示方法的数据和信息之间能互相交换,表示层采用抽象的标准方法定义数据结构,并采用标准的编码形式。数据压缩、加密和解密也是表示层可提供的数据表示变换功能。
应用层是OSI参考模型的最高层,是用户与网络的界面。应用层为特定类型的网络应用提供访问OSI参考模型环境的手段。因为用户的实际应用多种多样,这就要求应用层采用不同的应用协议来解决不同类型的应用要求,因此应用层是最复杂的一层,使用的协议也最多。典型的协议有用于文件传送的FTP、用于电子邮件的 SMTP、用于万维网的HTTP等。
ARPA 在研究 ARPAnet 时提出了 TCP/IP 模型,模型从低到高依次为网络接口层(对应OSI参考模型中的物理层和数据链路层)、网际层、传输层和应用层(对应OSI参考模型中的会话层、表示层和应用层)。TCP/IP 由于得到广泛应用而成为事实上的国际标准。TCP/IP 模型的层次结构及各层的主要协议如图1.11所示。
网络接口层的功能类似于 OSI 参考模型的物理层和数据链路层。它表示与物理网络的接口,但实际上 TCP/IP 本身并未真正描述这一部分,只是指出主机必须使用某种协议与网络连接,以便在其上传递IP分组。具体的物理网络既可以是各种类型的局域网,如以太网、令牌环网、令牌总线网等,也可以是诸如电话网、SDH、X.25、顿中继和 ATM 等公共数据网络。网络接口层的作用是从主机或结点接收 IP 分组,并把它们发送到指定的物理网络上。
网际层(主机-主机)是TCP/IP体系结构的关键部分。它和 OSI 参考模型的网络层在功能上非常相似。网际层将分组发往任何网络,并为之独立地选择合适的路由,但它不保证各个分组有序地到达,各个分组的有序交付由高层负责。网际层定义了标准的分组格式和协议,即 IP。当前采用的 IP 协议是第 4 版,即 IPv4,它的下一版本是 IPv6。
传输层(应用-应用或进程-进程)的功能同样和OSI参考模型中的传输层类似,即使得发送端和目的端主机上的对等实体进行会话。传输层主要使用以下两种协议
应用层(用户-用户)包含所有的高层协议,如虚拟终端协议(Telnet)、文件传输协议(FTP)、域名解析服务(DNS)、电子邮件协议(SMTP)和超文本传输协议(HTTP)。
由图 1.11 可以看出,IP 协议是因特网中的核心协议;TCP/IP 可以为各式各样的应用提供服务(所谓的 everything over IP),同时 TCP/IP 也允许 IP 协议在由各种网络构成的互联网上运行(所谓的 IP over everything)。正因为如此,因特网才会发展到今天的规模。
TCP/IP模型与OSI参考模型有许多相似之处。
它们之间的比较如图1.12所示。
两个模型除具有这些基本的相似之处外,也有很多差别。
无论是 OSI 参考模型还是 TCP/IP 模型,都不是完美的,对二者的讨论和批评都很多。OSI 参考模型的设计者从工作的开始,就试图建立一个全世界的计算机网络都要遵循的统一标准。从技术角度来看,他们希望追求一种完美的理想状态,这也导致基于 OSI 参考模型的软件效率极低。OSI 参考模型缺乏市场与商业动力,结构复杂,实现周期长,运行效率低,这是它未能达到预期目标的重要原因。
学习计算机网络时,我们往往采取折中的办法,即综合 OSI 参考模型和 TCP/IP 模型的优点,采用一种如图 1.13 所示的只有 5 层协议的体系结构,即我们所熟知的物理层、数据链路层、网络层、传输层和应用层。本书也采用这种体系结构进行讨论。
最后简单介绍使用通信协议栈进行通信的结点的数据传输过程。每个协议栈的最顶端都是一个面向用户的接口,下面各层是为通信服务的协议。用户传输一个数据报时,通常给出用户能够理解的自然语言,然后通过应用层,将自然语言会转化为用于通信的通信数据。通信数据到达传输层,作为传输层的数据部分(传输层SDU),加上传输层的控制信息(传输层PCI),组成传输层的 PDU,然后交到网络层,传输层的 PDU 下放到网络层后,就成为网络层的 SDU,然后加上网络层的PCI,又组成了网络层的PDU,下放到数据链路层,就这样层层下放,层层包裹,最后形成的数据报通过通信线路传输,到达接收方结点协议栈,接收方再逆向地逐层把“包裹”拆开,然后把收到的数据提交给用户,如图1.14所示。
()不是对网络模型进行分层的目标。 A. 提供标准语言 B. 定义功能执行的方法 C. 定义标准界面 D. 增加功能之间的独立性
我的答案:C 正确答案:B 解析:分层属于计算机网络的体系结构的范畴,选项 A、C 和 D 均是网络模型分层的目的,而分层的目的不包括定义功能执行的具体方法。
关于计算机网络及其结构模型,下列几种说法中错误的是() A.世界上第一个计算机网络是 ARPAnet B. Internet 最早起源于 ARPAnet C. 国际标准化组织(ISO)设计出了 OSI/RM 参考模型,即实际执行的标准 D.TCP/IP 参考模型分为 4 个层次
我的答案:D 正确答案:C 解析:国际标准化组织(ISO)设计了开放系统互连参考模型(OSI/RM),即 7 层网络参考模型,但实际执行的国际标准是 TCP/IP 标准 至于这里的 D 为什么是正确的,因为 TCP/IP 模型真的只定义了 4 个层:
- 网络接口层(Link Layer)
- 网络层(Internet Layer)
- 传输层(Transport Layer)
- 应用层(Application Layer)
我们在《计算机网络:自顶向下方法》中学的五层结构:物理层、链路层、网络层、传输层、应用层,实际上并非 TCP/IP 或者 OSI 模型的原本定义,而是为了更好地教学而编排出的结构。
下列能够最好地描述 OSI 参考模型的数据链路层功能的是() A. 提供用户和网络的接口 B. 处理信号通过介质的传输 C. 控制报文通过网络的路由选择 D. 保证数据正确的顺序和完整性
我的答案:B 正确答案:D 解析:数据链路层的功能包括:链路连接的建立、拆除、分离;帧界定和帧同步;差错检测等。选项 A 是应用层的功能,选项 B 是物理层的功能,选项 C 是网络层的功能,选项 D 才是数据链路层的功能。
在 ISO/OSI 参考模型中,可同时提供无连接服务和面向连接服务的是 ()。 A. 物理层 B. 数据链路层 C. 网络层 D. 传输层
我的答案:D 正确答案:B 解析:本题容易误选 D。ISO/OSI 参考模型在网络层支持无连接和面向连接的通信,但在传输层仅支持面向连接的通信;TCP/IP 模型在网络层仅有无连接的通信,而在传输层支持无连接和面向连接的通信。两类协议栈的区别是统考的考点,而这个区别是常考点。
在OSI参考模型中,当两台计算机进行文件传输时,为防止中间出现网络故障而重传整个文件的情况,可通过在文件中插入同步点来解决,这个动作发生在() A. 表示层 B. 会话层 C. 网络层 D. 应用层
我的答案:D 正确答案:B 解析:在OSI参考模型中,会话层的两个主要服务是会话管理和同步。会话层使用校验点可使通信-会话在通信失效时从校验点继续恢复通信,实现数据同步。